小川大介の中学受験合格を実現する逆算受験術

中学受験情報局『かしこい塾の使い方』 -> 主任相談員の中学受験ブログ -> 前田昌宏の中学受験が楽しくなる算数塾 -> 文章題の練習問題  -> 第590回 女子中の入試問題 文章題 3

第590回 女子中の入試問題 文章題 3

このエントリーをはてなブックマークに追加
文章題の練習問題 2022年10月01日18時00分

「第590回 女子中の入試問題 文章題 3」

2022年度の女子中入試で出された「文章題」の問題を見ています。

今回のテーマは倍数算とやりとり算です。

今回も、入試問題の前半で出されている一行問題ですから、ぜひとも正解したいところです。

それでは、早速、問題を見ていきましょう。

 

【問題】香さんは1500円、蘭子さんは500円を持っています。香さんは蘭子さんに(  )円を渡したので、蘭子さんは香さんの4倍のお金を持つことになりました。

(香蘭女学校中等科 2022年 問題1-⑤)

 

【考え方】

やりとりの倍数算です。

問題の条件を線分図に表してみます。

やりとりをする前の2人の和とやりとりをした後の2人の和は変わりませんから、線分図をかくときは「2人の和を1本の線分」で表すようにします。

上の線分図より、

①円+④円=1500円+500円

⑤円=2000円

①円=400円 … やりとり後の香さんの所持金

1500円-400円=1100円

とわかります。

答え 1100円

 

本問は、やりとりの倍数算の基本が確認できる問題です。

ここでは線分図を利用しましたが、次のような条件整理をして解いてもよいでしょう。

 

では、2問目です。

 

【問題】姉と妹がそれぞれ持っている鉛筆の本数の比は7:3ですが、姉が妹に14本あげると、2人の持っている鉛筆の本数の比は7:5になります。姉と妹が持っている鉛筆を合わせると全部で何本ですか。

(横浜雙葉中学校 2022年 問題1-(3))

 

【考え方】

これも、やりとりの倍数算です。

そこで、前問の別解の条件整理の方法を使ってみます。

やりとり前の和とやりとり後の和は同じですから、「和」に書かれた比を最小公倍数でそろえます。

42□-35□=14本

7□=14本

1□=2本

60□=2本×60=120本

答え 120本

 

本問もやりとりの倍数算の基本が確認できる問題です。

前問と異なり、やりとりの前後が比で表されていますので、比をそろえる(「比合わせ」)ことがポイントです。

 

それでは、3問目です。

 

【問題】姉は3000円、妹は2500円を持ってお菓子を買いに行きました。2人はそれぞれ同じ値段のお菓子を1個ずつ買い、その後、姉が妹に150円をあげたところ、姉と妹の所持金の比は12:11になりました。2人が買ったお菓子の値段を求めなさい。

(浦和明の星女子中学校 2022年 問題1-(5))

 

【考え方】

問題の条件がこれまでより増えました。

どのような変化があったのかを、前問と同じ方法で整理してみます。

倍数算では、「やりとりをしても和は変化しない」、「同じ量だけ増えても(減っても)差は変化しない」というポイントがありますので、問題前半は差、後半は和に着目してみましたが、上手くいきません。

そこで問題の後半に「差分け算」の考え方を用いてみます。

上の数直線から、姉が150円減り、妹が150円増えたので、2人の差は300円縮まり、最後の差が200円になることがわかります。

⑫-⑪=200円

①=200円

⑪=200円×11=2200円 … 妹の最後の所持金

2200円-150円=2050円 … 妹の途中の所持金

2500円-2050円=450円

答え 450円

 

本問は、倍数算の「和一定(やりとり)」と「差一定(同量増加または同量減少)」の両方が含まれている問題のように見えますが、条件整理をしてみると「差分け算」を使うことに気づけます。

倍数算の基本問題ができるようになっていれば、このような複数の文章題からできている問題にもチャレンジして、条件を整理する方法を使いこなす練習をしてみましょう。

 

では、最後の問題です。

 

【問題】A、B、Cの3人が、それぞれお金を持っていました。AがBに500円をわたし、BがCに300円をわたし。CがAに450円をわたしたので、3人の持っている金額が同じになりました。はじめにAが900円持っていたとすると、Cははじめにいくら持っていましたか。

(洗足学園中学校 2022年 問題2-(2))

 

【考え方】

やりとりが3回行われますから、その様子を「流れ図(フローチャート)」に整理します。

図を見ると、Aさんの所持金の変化がわかります。

すると、Cさんの所持金も、最後から順にわかっていきます。

答え 1000円

 

本問は、やりとり算の基本である流れ図を利用すると、迷うことなく正解にたどり着ける問題です。

 

今回は、2022年度に女子中の入試で出された問題の中から、倍数算とやりとり算に注目してみました。

どちらの文章題も、問題の条件に応じた整理方法を利用すると正解できると思います。

もし、不正解の問題があるときは、条件を整理したか、問題に適した整理方法であったかなどをチェックして、自分に不足している部分を補っておきましょう。

このエントリーをはてなブックマークに追加
文章題の練習問題 / 中学入試の算数問題 2022年10月01日18時00分
主任相談員の前田昌宏
中学受験情報局『かしこい塾の使い方』の主任相談員である前田昌宏が算数の面白い問題や入試問題を実例に図表やテクニックを交えて解説します。
Copyright (c) 2008- 中学受験情報局『かしこい塾の使い方』 All rights reserved.